Reduction of LABOCA data with BoA

- Observing with LABOCA at APEX
- Basic data reduction
- More evolved steps
Focus, pointing, calibration

- Checking (and correcting) Focus settings:
 - f_x, f_y, f_z focus in X, Y and Z

- Correcting pointing offsets + calibration scans:
 - pspiral one 20 s spiral, pointing on planets
 - pspirall one 35 s spiral, pointing on >10 Jy sources
 - spiralras 4×20 s spirals, pointing on few Jy sources
 - calibration on secondaries
 - spirallras 4×35 s spirals, pointing on ~1 Jy sources

- Measuring the sky opacity:
 - bolotip(az) hot–sky + skydip
LABOCA Observing run
Basic data reduction
Further steps

pspiral()
pspirall()
spiralras()
Typical observing session

- Instrument setup, pointing and focus corrections
- Calibration: observing primary calibrators (= planets) if any, secondary calibrators; skydip
- Observing *your* project:
 - Observing calibrator(s)
 - skydip
 - Pointing correction near science target
 - Observing *your* target(s)
 - Pointing correction near science target
 - Observing *your* target(s)
 - Observing calibrator(s), skydip
 - Pointing correction near science target
 - Observing *your* target(s)
 - (...)
A shortcut to start BoA, as well as required environment variables, are defined in a start-up script: `.boarc.(c)sh`

```
/homes/schuller> source /soft/astro/boa/.boarc.csh
/homes/schuller> which boa
boa: aliased to python -i /soft/astro/boa/boa/boa/BoaStart.py
/homes/schuller> boa
BoA - the Bolometer Array data Analysis Software
Revision: 2447
Date: 2007-12-04 13:20:44 +0100 (Di, 04 Dez 2007)
boa< I: BoA - Offline mode
boa>
```
Using a more recent version:

```
/home/schuller> source /home/schuller/.boarc.csh
/home/schuller> which boa
boa: aliased to python -i /home/schuller/boa/SVN/boa/BoaStart.py
/home/schuller> boa
```

BoA - the Bolometer Array data Analysis Software
Revision: 2610
Date: 2008-09-18 17:37:12 +0200 (Thu, 18 Sep 2008)

```
boa< I: BoA - Offline mode
boa>
```

Defining input directory and project ID:
```
boa> indir('/data/schuller/Atlas/Chile/')
boa< I: input directory : /data/schuller/Atlas/Chile/
boa> proj('C-082.F-0010B-2008')
```

What files do we have there?...
```
boa> ils()
boa< W: list empty, populating...
  53366-2008-10-12 GAL-p48.0 MAP 1 45 ['LABOCA-ABBA'] [318] 54751.959 (217.7 MB)
  53374-2008-10-13 GAL-p49.0 MAP 1 45 ['LABOCA-ABBA'] [318] 54752.014 (217.5 MB)
  53375-2008-10-13 G45.1 POINT 1 35 ['LABOCA-ABBA'] [318] 54752.038 (2.6 MB)
  53376-2008-10-13 GAL-p49.5 MAP 1 45 ['LABOCA-ABBA'] [318] 54752.039 (216.9 MB)
```
Calibration scheme

Calibrating = correcting for opacity

- Compute opacity from skydip measurements
- Check on calibrators (= sources with known fluxes) that the opacity is correct
- If not, apply an extra correction factor

Primary calibrators = the planets

- Primary calibrators = Mars, Uranus and Neptune
 → use astro to get expected flux at given time and date

Astro> let beam 19.2
Astro> let frequency 345.
Astro> time 08:27:13 02-MAY-2008
Astro> planet neptune
DE=30.23 DS=30.04 Maj= 2.22 Min= 2.16 PA=337.68 TB= 81.04 S(345.0)= 23.58
Frequency 345.0: Beam 19.2 Tmb 0.65 Flux 23.47 Size 19.3
Skydip reduction

Scan: 12761 (1) \rightarrow SKYDIP \rightarrow 2008-05-02T06:55:35

Sky temperature [K] vs Elevation [deg]
Skydip reduction

- Single scan:
  ```
  boa> lab = os.getenv('BOA_HOME_LABOCA')
  boa> scanrn = 12760  # scan number of hot-sky
  boa> execfile(lab+’/reduce-skydip.boa’)
  (...)
  boa< I: ---- calibration hot-sky ----
  boa< I: Tsky = 101.26 K
  boa< I: ---- skydip results ----
  boa< I: Signal corrected for blind bolos
  boa< I: Coupling = 74.83 %
  boa< I: tau_z   = 0.139
  boa< I: Tatm   = 262.28 K
  
  The result: zenithal tau = 0.139
  The problem: usually underestimated... →1.3 × 0.139
  ```

- To process many scans, update list of scans in:
  ```
  $BOA_HOME_LABOCA/reduce-skydip-loop.boa
  (and output file name), and exec that file. Then use:
  getTau(refmjd,method,tauFile)
  ```
Secondary calibrators

- Single scan:
 boa> read(12763)
 boa> opac(1.3 * 0.139)
 boa> execfile(lab+’/reduce-calib-map.boa’)
 (...)
 boa< I: Peak flux = 31.3443131588
 boa< I: Delta Az ["] = -1.73020835982
 boa< I: Delta El ["] = -4.62551226609
 boa< I: FWHM_1 ["] = 23.2210223465
 boa< I: FWHM_2 ["] = 26.2340775143
 boa< I: Tilt [deg] = -395.287459169
 boa< I: map r.m.s. = 0.513640

--
FLUX G10.62: 31.344313 [expected: 32.200001, 97.342585 percent]
--

- To process many scans, update list of scans in:
 $BOA_HOME_LABOCA/reduce-calib-loop.boa
 (and output file name), and exec that file. Then use:
 getCalCorr(refmjd,method,calFile)
reduce-map-weaksource.boa

$BOA_HOME_LABOCA/reduce-map-weaksource.boa

Read LABOCA specific definitions
import os
if not os.getenv('BOA_HOME_LABOCA'):
 raise 'Environment variable BOA_HOME_LABOCA undefined'
execfile(os.path.join(os.getenv('BOA_HOME_LABOCA'), 'cabling.py'))

CntstoV(data)
updateRCP('master-laboca-may07.rcp')
data.zeroStart()
flat()

Flag bad channels
flagC(resistor)
flagC(cross)
flagC(sealed_may07)
APPLY HE3 DRIFT CORRECTION IF SELECTED

try:
 tmp = apply_he3corr
 if tmp:
 print "***** Warning: He3 correction should not be used for SV data"
 print "***** Instead, the correctBlind(data) function can be used."
except NameError:
 apply_he3corr = 0

if apply_he3corr:
 correctHe3(data)

Convert to Jy/beam
data.Data *= array((VtoJy),’f’)
Flag stationary points and high acceleration
data.flagSpeed (below=30.)
data.flagSpeed(above=500.)
data.flagAccel(above=800.)

Flag dead and very noisy channels
data.flagFractionRms(ratio=5)

First correlated noise removal on all channels and despiking
medianNoiseRemoval(chanRef=-1,factor=0.8,nbloop=5)
despike(below=-3,above=3)

correlated noise removal by groups and boxes of channels
(Laboca wireing)
correlbox(data,factor=0.8,nbloop=2)
correlgroup(data,factor=0.8,nbloop=2)
```python
# Flag noisy channels
data.flagFractionRms(ratio=5)

# Despiking
despike(below=-3,above=3)

# Filter on low frequencies
data.flattenFreq(below=0.3, hiref=0.35)
base(order=1, subscan=0)
despike(below=-3, above=3)

# Compute weights based on rms of each channel
weight()

Now you can compute a map:
mapping(system='EQ', sizeX=[305.5, 304], sizeY=[-12.5, -11.5], limitsZ=[-1, 2.5])
```
Loop over the scans

```python
proj('M-079.F-5000-2007')
indir('...')  # path to the data

scans = [13358, 13359, 13564, 13565, 13593, 13594]
taus = [0.22, 0.22, 0.25, 0.23, 0.2, 0.2]

ra1, ra2 = 262.58, 258.84
dec1, dec2 = -38.5, -34.1
mapList = []
for snum in range(len(scans)):
    read(scans[snum])
    opac(taus[snum])
    execfile(lab+'/reduce-map-strongsource.boa')
    mapping(system='EQ', sizeX=[ra1, ra2], sizeY=[dec1, dec2],
            oversamp=2, limitsZ=[-2, 10])
    mapList.append(data.Map)

ms = mapsum(mapList)  # or mapsum2, or mapsumfast
ms.display(limitsZ=[-1, 5])
ms.dumpMap('atlas_map.data')
ms.writeFits('atlas-SV.fits')
```

F. Schuller - October 24, 2008 Reduction of LABOCA data with BoA
Use map (or better, S/N map) from previous step to flag data.

```python
snr = copy.deepcopy(ms)
snr.Data = ms.Data * sqrt(ms.Weight)
mapList = []

for snum in range(len(scans)):
    read(str(scans[snum]))
    opac(taus[snum])
    data.flagSource(threshold=5, model=snr)
    execfile('reduce-map-strongsource.boa')
    data.unflag(flag=8)
    mapping(system='EQ', sizeX=[ra1, ra2], sizeY=[dec1, dec2],
            oversamp=2, limitsZ=[-2, 10])
    mapList.append(data.Map)
ms2 = mapsum(mapList)
ms2.display(limitsZ=[-1, 5])
ms2.dumpMap('atlas_map-2.data')
ms2.writeFits('atlas-SV-2.fits')
```
2nd iteration
Summary

- The difficult step = **calibration**, i.e. getting good estimates for opacity, and optionally extra correction factors:

  ```python
  data.Data /= array(calcor,'f')
  ```

- Co-adding scans: use `mapsum(fast)`, all maps must be computed with **same coordinate limits and same pixel size**

- All functions include a brief documentation:

  ```python
  boa> print data.flagFractionRms.__doc__
  ```

 | DES: flag according to rms, with limits depending on median rms |
 | INP: (i list) chanList : list of channel to flag (default: current list) |
 | (f) ratio : channels with rms below median/ratio and above median*ratio will be flagged |
 | (i) flag : value of flag to set (default: 2 'BAD SENSITIVITY') |
 | (b) plot : plot the results |

- Some jumps in your data? (= spikes seen by all bolo)

  ```python
  boa> execfile(lab+’/boaLaboca.py’)
  boa> jumps()
  ```

 found 2 jumps

 boa< I: 72 timestamps flagged (1.86 %) with flag 7
 boa< I: 21 timestamps flagged (0.54 %) with flag 7

More questions?... Contact Fred or Axel!