

The APEX calibration plan: Goals, implementation and achievements

Felipe Mac Auliffe ESO/APEX Observing Specialist

Motivation

- Get to know the real time efforts and dedicated measurements at APEX currently in use.
- To share the latest developments of the APEX calibration plan.
- Will only cover the APEX facility instruments: SHeFI, LABOCA and SABOCA

Introduction

• The quality of scientific data depends on the accuracy of the absolute intensity calibration.

- The data needs to be calibrated.
- **Uncertainty** in the calibration must be determined.

- Swedish Heterodyne Facility Instrument (SHeFI)
- Four single-pixel heterodyne receiver
- Central frequencies of 230, 345, 460 and 1300 GHz

- SHeFI calibration plan HET230 & HET345
- Results and analysis available online
 - http://www.apex-telescope.org/heterodyne/shfi/calibration/
- Intensity calibration stability
 - Strong spectral lines in several sources over the whole frequency range.
 - Observations performed in regular basis during technical time.
 - Monitor the calibration stability as function of time and frequency

SHeFI HET230 (APEX-1)

	12CO(2-1) LSB	12CO(2-1) USB	CS(5-4) LSB	CS(5-4) USB	13CO(2-1) LSB	HCN(3-2) USB	H2CO(3-2) LSB	CH3OH(5-4) LSB
OMC1	\checkmark	1	1	1	1	~	1	~
WB947	√	√			1			
IRAS16293	\checkmark	1	1	1	1	1	~	
M17SW	√	1	1	1	1	1		
G34.3	✓	1	~	1	√	1	1	~
IRC+10216	\checkmark	1	√	1	1	1		
L1551-IR	\checkmark	1	1			1	1	
O-Ceti	\checkmark	\checkmark			1			
IRAS15194	✓	1			1			
OH231.8	\checkmark	1			1	1		
CRL2688	✓	1	√	1	1	1		
N207IR	\checkmark	1	√	1	1	1	1	\checkmark
CRL618	✓	1			1	1		
NGC6334I	√	1	1	1	1	1	1	~

SHeFI HET345 (APEX-2)

	12CO(3-2) LSB	12CO(3-2) USB	13CO(3-2) LSB	13CO(3-2) USB	C18O(3-2) LSB	CS(6-5) LSB	CS(7-6) LSB	HCO+(4-3) USB	HCN(4-3) USB	H2CO(5-4) USB	CH3OH(7-6) LSB	OCS304 LSB	OCS304 USB
OMC1	1	~	~	~	√	√	~	√	√	√	√	~	<
WB947	~	~	1	√									
IRC+10216	~	4	1	✓		√	~		√				
M17SW	~	4	1	√	~	1	√	~				~	√
IRAS16293	1	4	1	√	√	√	~	~	~	√		~	<
G34.3	1	1	1	√	~	√	1	<	~	~	~	<	1
L1551-IR	1	~	1	√	~	√		1					
OH231.8	√	1	1					~	~				
O-Ceti	√	1	~	1									
IRAS15194	1	~	1										
CRL2688	1	~	1	~			~		✓				
N207IR	1	1	1	~	1	1	1	✓	✓	~	1		
CRL618	1	1	1	1				<	~				
NGC6334I	1	1	1	1	~	1	~	~	1	 ✓ 	~		

IRC+10216							
Line	Frequency [GHz]	Maximum [K]	Area [K*km/s]	Position [km/s]	Linewidth [km/s]	Spectrum	
<u>12CO(2-1)L</u>	230.538000	23.92	507.36	-25.59	21.21		
<u>12CO(2-1)U</u>	230.538000	22.71	481.77	-25.52	21.22		
<u>CS(5-4)L</u>	244.935644	9.69	207.54	-25.70	21.42		
<u>CS(5-4)U</u>	244.935644	9.36	200.73	-25.62	21.46		
<u>13CO(2-1)L</u>	220.398677	1.82	65.46	-26.04	35.89		
<u>HCN(3-2)U</u>	265.886180	28.60	564.96	-24.53	19.75		

Source : IRC+10216

Line : 12CO(2-1)U

Date	pwv [mm]	EI [°]	Maximum [K]	Area [K*km/s]	Position [km/s]	Linewidth [km/s]	Spectrum
2008-12-08	5.26	30.6	21.84	458.53	-25.76	20.99	
2008-12-09	4.86	50.5	23.05	487.64	-25.70	21.16	
2008-12-10	3.85	40.3	23.42	492.82	-25.85	21.04	
2009-01-24	1.24	53.6	23.74	502.14	-25.70	21.15	
2009-05-20	1.80	50.2	24.23	512.51	-25.69	21.15	
2010-04-01	0.86	52.7	23.69	502.82	-25.59	21.22	
2010-06-11	1.36	44.1	22.09	470.42	-25.67	21.30	
2010-12-14	0.18	40.5	23.62	502.77	-25.68	21.28	
2012-04-05	2.84	37.4	21.29	453.44	-25.70	21.30	
2013-03-14	0.83	53.1	22.46	471.77	-25.61	21.01	
2013-11-14	1.83	34.2	19.75	9 422.24	-25.43	21.38	

Atacama Pathfinder Experiment - APEX Calibration Plan for the 230 GHz Receiver Maximum [K] - IRC+10216 - 12CO(2-1)U

Monitoring of normalised parameters

Source-independent data

 Better detect time-variations of the measured parameters for the various frequencies.

Science with the Atacama Pathfinder Experiment - APEX

12

• SHeFi Sideband response.

- USB vs LSB observations (Both tunings should give identical results).
- We monitor the line ratios USB/LSB for some lines over the band, to detect problems with the receiver or the calibrator software.

1997 (See

Science with the Atacama Pathfinder Experiment - APEX

19-22 January 2014, Schloss Ringberg

- Frequency stability.
 - Monitor the stability of our complete LO system, from Doppler shift calculation to backend properties.
 - Through the line-width monitoring we can detect any extra broadening, e.g. because of LO frequency fluctuations.
 - WB947 suits the needs for this type of monitoring (narrow emission, Gaussian)

• What's new in the SHeFI calibration plan ?

- SHeFI usage and performance monitor
 - Monitoring of the used frequencies
 - Monitoring of Trec performance over the band in time.

• SHeFI Reference Spectra Database.

- Reference spectra for line calibrators as well as line pointing sources (HET230, HET345 and HET460)
- Available at:

http://www.apex-telescope.org/heterodyne/ shfi/calibration/database/

Atacama Pathfinder EXperiment APEX Calibration

Home > Instrumentation > SHeFI receivers > Calibration > Reference Spectra Database

SHeFI Reference Spectra Database

We maintain a database of reference spectra for line calibrators as well as line pointing sources. Use this interface to search for and display these spectra.

÷

Source type:

Line Calibrator
Line Pointing Source

Receiver:	 HET230 	O HET345	O HET460
-----------	----------------------------	----------	----------

Source name: OMC1 + Spectral line: CO(2-1)

Submit: Search & display spectra

• The calSpec(src,line) function

- Observes a calibrated spectrum on a calibrator, either in the current configuration, or using a standard Calibration Plan setup and line.
- OMC1, IRC+10216, and SGRB2(N)
- Use line='current' to observe the calibration source using the 'current' spectral setup (line, velocity)
- No need to retune and point on calibration source!
- Note that you should have a reliable pointing and focus

		1; 2 OMC1 CS(5-4)U AP-H201-X201 0:12-JAN-2012 R:24-DEC-2013				
		RA: 05:35:14.35 DEC: -05:22:32.3 Eq 2000.0 Offs: +0.0 +0.0				
•	OMC1 / HET230	Unknown tau: 0.093 Tsys: 168. Time: 1.00E+02min El: 46.3				
		N: 473393 IO: 447189. VO: 150.0 Dv: -9.3430E-02 LSR				
		F0: 244935.644 Df: 7.6334E-02 Fi: 232934.409				
	214 250 CIL	Bef: 1.0 Fef: 0.95 Gim: 0.1000				
•	214 - 250 GHZ	827, 830, 833, 836, 839, 842, 845, 3158, 3161, 3164,				
		316/, 31/0, 31/3, 31/6, 4313, 4316, 4319, 4322, 4325, 4328, 44074, 7004, 7004, 7007, 7002, 7002, 7002, 7000, 7077, 74775, 74779				
		74551, 7984, 7987, 7995, 7996, 7999, 8002, 54772, 51775, 51778,				
•	June 2011 - December	79140 91162 91513 92333 92709 93679 93091 93094 93097 93000				
	2013 (More than 2	83993 83996 84853 85241 85539 85542 85545 85548 85551 85554				
	waars of data)	8557, 101248, 102552, 102557, 102562, 102567,				
	years of data)	100				
•	Bonus track: Line					
	survey of calibration					
	sources for free:	50				
		المعتسانية ليتعابيه الالبيانية معالية ساعدانية المحسولة المحسولة المحدية ا				
		$2.2 \ 10^5$ $2.3 \ 10^5$ $2.4 \ 10^5$				
		Rest Frequency (MHz)				

• LArge BOlometer CAmera.

- Array of 295 channels, arranged in 9 concentric hexagons around a central channel.
- It operates in the 870 μm (345 GHz) atmospheric window.
- Angular resolution is 18.6" (HPBW)
- Field of view is 11.4'
- Available since May 2007

Intensity calibration

- Zenith opacities
- Absolute calibration scale
- Calibrators (primary & secondary)
- Pointing and focus
- Beam shape and angular resolution
- Array parameters
- Results and analysis available online at <u>http://www.apex-telescope.org/bolometer/laboca/calibration/</u>

Zenith opacities

- The opacity of the sky is usually determined by skydip measurements.
- Continuous scan from $El = 82^{\circ}$ down to $El \sim 23^{\circ}$
- Atmospheric emission is measured and its dependence on the elevation fitted by a model.

26

- Need to recalibrate opacities!
 - Official BoA releases underestimate the opacity resulting from the skydip reduction.
 - Assumption that sky temperature equals the ambient temperature.
 - BoA use the ambient temperature as the best guess for the sky temperature during the fit.
 - **Overestimates** the sky temperature and therefore **underestimates** the opacity.
 - Solution: Combine skydips, taumeter measurements and calibrators fluxes.

- Calibrated sky opacity (aka tau_mean)
 - tau_sd : Tau derived from sky dips (redsky function in BoA)
 - tau_rm : Computed from PWV radiometer and atmospheric model.
 - tau_mean = (1.3*tau_sd + 0.9*tau_rm)/2.0
- Online database tool at : <u>http://www.apex-telescope.org/bolometer/laboca/calibration/</u> <u>opacity/</u>

28

• Online help is available with BoA examples.

Max-Planck-Institut für Radioastronomie

Home > Instrumentation > LABOCA > LABOCA Calibration

LABOCA Zenith opacities

LABOCA zenith opacities as a function of time. For each entry in the output table, we provide three values for the zenith opacity:

- tau_sd, derived by reducing a Skydip scan with redsky(scannr).
- ▶ tau_rm, computed from the precipitable water vapour (PWV) and an atmospheric model.
- A linear combination of these two: tau_mean = (1.3*tau_sd + 0.9*tau_rm)/2.0

The latter usually provides the best estimate of the true zenith opacity; but users are strongly encouraged to carefully and critically check all these values and their variations during the time interval covering their science observations.

<u>Download</u> all opacities (BoA format) which is generated automatically using a pipeline reduction. Need <u>help</u> using these pages ?

UT Date start [yyyy-mm-dd]	2013-05-01
UT Date stop [yyyy-mm-dd]	2013-12-01
Scan quality factor	Ok ‡
Submit	Reset

LABOCA Sky opacities

Date range = 2013-05-01 to 2013-12-01

Plot opacities (tau mean)

Scan quality factor = Ok

Number of records = 486

Open BoA opacities file

Help Close window

scan	yyyy-mm-dd hh:mm:ss	mjd	tau_mean	tau_rm	tau_sd	pwv	scan quality
27060	2013-05-02 18:17:46	56414.7623432060	0.446	0.485	0.350	1.425	0.041
27348	2013-05-03 07:40:00	56415.3194453125	0.332	0.370	0.255	0.945	0.004
27367	2013-05-03 09:31:01	56415.3965460648	0.330	0.369	0.252	0.940	0.013
27390	2013-05-03 11:42:51	56415.4881033218	0.320	0.357	0.245	0.894	0.008
27426	2013-05-03 13:24:26	56415.5586508218	0.293	0.324	0.227	0.769	0.012
27438	2013-05-03 14:29:42	56415.6039574306	0.286	0.328	0.213	0.785	0.065
27453	2013-05-03 15:39:35	56415.6524942824	0.317	0.326	0.261	0.778	O.144
27480	2013-05-03 17:51:29	56415.7440918403	0.294	0.350	0.209	0.869	0.149
27494	2013-05-03 18:32:26	56415.7725244097	0.290	0.293	0.243	0.654	0.181
27697	2013-05-04 05:56:22	56416.2474902778	0.222	0.243	0.173	0.484	0.026
27726	2013-05-04 07:57:50	56416.3318388773	0.195	0.223	0.145	0.418	0.063
27785	2013-05-04 14:15:04	56416.5938063773	0.232	0.258	0.179	0.532	0.003
27797	2013-05-04 15:24:19	56416.6418871296	0.263	0.285	0.207	0.626	0.049
27811	2013-05-04 16:04:23	56416.6697175000	0.275	0.298	0.217	0.675	0.049
27824	2013-05-04 17:11:37	56416.7164060301	0.274	0.307	0.209	0.704	0.015
27840	2013-05-04 18:19:39	56416.7636541782	0.260	0.277	0.208	0.597	0.083

Science with the Atacama Pathfinder Experiment - APEX

Atacama Pathfinder Experiment – APEX LABOCA opacities (tau mean) – Scan quality = Ok 2013-05-01 – 2013-12-01

- Primary calibrators
 - Mars, Uranus and Neptune
 - Flux densities can be well predicted based on models (distance, diameter and illumination)
 - At APEX, we use the Astro program (GILDAS software)

)I Date

34

• Secondary calibrators

Source name	RA (J2000)	DEC (J2000)	Flux [Jy]± sigma	Alt name
HLTAU	04 31 38.45	+18 13 59.00	2.0 ± 0.2	
CRL618	04 42 53.60	+36 06 53.70	4.8 ± 0.5	
V883-ORI	05 38 19.00	-07 02 20.00	1.4 ± 0.3	
N2071IR	05 47 04.85	+00 21 47.10	9.1 ± 0.8	
VYCma	07 22 58.33	-25 46 03.20	1.5 ± 0.1	VY-CMA
CW-LEO	09 47 57.38	+13 16 43.60	4.1 ± 0.3	IRC+10216
B13134	13 16 43.15	-62 58 31.60	12.9 ± 1.3	
IRAS16293	16 32 22.90	-24 28 35.60	16.1 ± 1.3	
G5.89	18 00 30.37	-24 04 00.40	27.6 ± 0.2	J1800-241
G10.62	18 10 28.66	-19 55 49.70	33.0 ± 1.8	
G34.3	18 53 18.50	+01 14 58.60	55.3 ± 3.7	
G45.1	19 13 22.07	+10 50 53.40	8.0 ± 0.6	
K3-50A	20 01 45.69	+33 32 43.50	14.7 ± 1.4	
CRL2688	21 02 18.80	+36 41 37.70	5.5 ± 0.9	

LABOCA Calibrators

- Pipeline reduction of LABOCA primary and secondary calibrators using the opacities file in <u>Laboca opacities.dat</u> and the standard calibration factor of 6.3 Jy/µV.
- The data file can be used to correct for the typically small deviations from the standared calibrations in the BoA reduction of LABOCA data.
- It is up to the user to check the entries in the file for consistency.
- Need <u>help</u> using this pages ?

Filter by date range and quality factor	
UT Date start [YYYY-MM-DD]	2013-05-01
UT Date stop [YYYY-MM-DD]	2013-12-01
Scan quality factor	Ok ‡
	Submit Reset
Filter by date range, primary calibrators and q	uality factor
UT Date start [YYYY-MM-DD]	2013-05-01
UT Date stop [YYYY-MM-DD]	2013-12-01
Scan quality factor	Ok ‡
Primary calibrators	All ÷
	Submit Reset
Filter by date range, secondary calibrators and	d quality factor
UT Date start [YYYY-MM-DD]	2013-05-01
UT Date stop [YYYY-MM-DD]	2013-12-01
Scan quality factor	Ok ‡
Secondary calibrators	All ÷
	Submit Reset

http://www.apex-telescope.org/bolometer/laboca/calibration/calibrators/

- Array parameters
 - RCP files (Receiver Channel Parameter)
 - Suspicious channels files
 - Available for download at: http://www.apex-telescope.org/bolometer/ laboca/calibration/array/

- Submillimeter APEX BOlometer CAmera
- 39 channel TES bolometer array
- It operates in the 350 µm (850 GHz) atmospheric window.
- Field of view is 1.5'
- Angular resolution is 7.8" (HPBW)

Intensity calibration

- Zenith opacities
 - http://www.apex-telescope.org/bolometer/saboca/calibration/opacity/
- Calibrators (primary & secondary) and absolute calibration scale
 - http://www.apex-telescope.org/bolometer/saboca/calibration/calibrators/
- Pointing and focus
- Beam shape and angular resolution
- Array parameters
 - http://www.apex-telescope.org/bolometer/saboca/calibration/array/

- Raw data coming from SABOCA just have the detector voltage output as intensity.
- In order to obtain the intensity in astronomical units, the data have to be multiplied with a conversion factor VtoJ [Jy/mV], as shown in the next table.
- BoA function implemented to apply the correct conversion factor.
- Results available online.

Time period	VtoJy [Jy/mV]
2009-01-01 to 2010-01-01	3.900
2010-01-01 to 2010-04-27	4.450
2010-04-27 to 2010-08-30	4.540
2010-08-30 to 2011-01-01	3.780
2011-01-01 to 2011-05-30	4.660
2011-05-30 to 2012-01-01	4.130
2012-01-01 to 2012-05-27	4.570
2012-05-27 to 2012-08-24	4.680
2012-08-24 to 2013-01-01	4.260
2013-01-01 to now	4.500

Science with the Atacama Pathfinder Experiment - APEX

- The "APEX Calibration Plan" is a science operations team effort.
- Astronomers, Observing Specialists (OS) and Telescope & Instruments Operators (TiO's) are deeply involved in every aspect (Observations, reduction pipelines, analysis and publication).
- APEX Science Operations group
 Frederic Schuller (Leader), Michael Dumke, Francisco Montenegro,
 Rodrigo Parra, Felipe Mac Auliffe, Francisco Azagra, Claudio Agurto,
 Mauricio Martinez, Paulina Venegas & Edouard Gonzalez.
- Software: CLASS, BoA, Crush, Python, php, MySql among many others.

The time is gone The talk is over Thought I'd something more to say

Science with the Atacama Pathfinder Experiment - APEX

19-22 January 2014, Schloss Ringberg